A Novel Peptide for the Control of Cancer and Inflammatory Diseases

Novel Patented Peptides with Strong In-Vivo Efficacy Against Cancer and Inflammatory Diseases

Background

Oxidative stress is a persistent and often irreversible oxidative shift that has been defined as an imbalance between oxidants and antioxidants in favor of the former. This imbalance results in an increase in cellular reduction/oxidation reactions. Oxidative stress is implicated in the pathogenesis of several diseases including cancer, inflammatory disorders, cardiovascular and neurodegenerative disorders, sepsis, reperfusion damage, rheumatoid arthritis, osteoarthritis, and diabetes.

Technology

Dr. Basil Rigas, Professor of Medicine and Professor of Pharmacological Sciences, has synthesized novel and patented peptides that contain at least two cysteine residues capable of forming one or more disulfide bridges, which when given to cancer cells inhibits their growth in a cell culture system. Preliminary data indicate that this peptide is effective in slowing the growth of cancer and inflammation in a murine xenograft tumor model. Furthermore, this peptide enhanced the anticancer effect of other anticancer agents.

Patent number/Publication:

• US Utility 8,754,047
• Yu Sun and Basil Rigas. Cancer Res. 2008 October 15; 68(20).

Advantages

• Patented peptide compositions to be used either alone or in conjunction with other known therapies

Applications

• Therapeutics, Peptides
• Cancer
• Inflammation

Valery Matthys, PhD
Licensing Specialist
Office of Technology Licensing and Industry Relations
N5002 Melville Library
Stony Brook University
Stony Brook, NY 11794-3369
631-632-6561
Valery.matthys@stonybrook.edu
www.stonybrook.edu/research/otlir