Background

With the increasing number of immunodeficient subjects and the increase of the lifespan of these subjects due to the advance in medicine there has been a concomitant rise in the number of cases of life-threatening fungal infections. Current antifungals are either static, toxic or/and with a too narrow spectrum of activity and increased use have led to increased drug resistance. Therefore, there is a need for new, safer and more effective compounds. Studies have shown that a fungal sphingolipid, glucosylceramide (GlcCer), is critical in promoting fungal virulence and is involved in the infectious processes of a variety of human pathogenic fungi.

Technology

Dr. DelPoeta, Professor in the Department of Molecular Genetics and Microbiology from Stony Brook University identified compounds that significantly decrease the synthesis of GlcCer in *C. neoformans* but not in mammalian cells. These compounds are effective *in vitro* against a series of pathogenic fungi, protect mice from cryptococcal meningitis, invasive candidiasis and significantly decrease lung burden of *P. murina*, the murine model of human pneumocystosis.

Advantages

- Safe and well tolerated in animals
- Good pharmacokinetic properties
- Easily amenable to structural modification for the synthesis of new derivatives.
- Synergistic with existing antifungals

Applications

- Fungal Infections, including *C. neoformans*, *P. murina*, *P. jiroveci*, *R. oryzae* and dimorphic fungi
- Active *in vivo* against cryptococcosis, candidiasis, and pneumocystosis

Patent number/Publication:

- Patent pending