Novel monoclonal antibodies (mABs) to treat hypervirulent infections

mABs elicit protective immune response in murine infection models resulting in increased bacterial clearance and mice survival

Background

Hypervirulent *K. pneumonia* (hvKp) strains are a major threat worldwide with predominant occurrence in Asia. hvKp’s ability to cause life-threatening infections in healthy individuals, coupled with their ability to acquire MDR phenotype has resulted in an urgent need to develop novel treatment strategy. Such a treatment strategy would ideally be a) not susceptible to resistance development and, b) specific to pathogenic organism without affecting microbiome.

Technology

Dr. Fries and her team have developed an antibody based approach overcoming the problems associated with the use of antibiotics. The mABs generated against a conserved capsular polysaccharide was demonstrated to confer significant protection and applicability as a diagnostic tool in murine hvKp infection models.

Advantages

- Highly specific to pathogen, leaves microbiome unaltered
- Less likely to promote drug resistance
- Protective against dissemination in colonized animal models
- Long serum half life of mABs results in reduced dosing frequency

Diagnostic applicability for early detection of hvKp infection

Applications

- Infectious diseases
- Therapeutics
- Diagnostics

Patent

PCT application covering composition and method of use filed (PCT/US16/58257)

Figure: Upper panel depicts reduced bacterial dissemination in a Kp colonized animal model and lower panel demonstrates survival benefit in Kp infected mice, following treatment with mABs.