
More information
Documentary: "She Taught Computers to Talk" Lecture by Hopper

GRACE HOPPER

“A ship in port is safe, but that is not what ships are built for.”

Grace Hopper (1906 – 1992) was a pioneering
computer scientist who helped develop the
first compiler, a tool that translates
programming languages into machine code.
She also
played a key role in the development of the
COBOL programming language. Hopper was a
strong advocate for greater inclusion of
women in computer science and received
numerous awards for her contributions to the
field. She was known for her intelligence,
innovation, and determination, and her legacy
continues to inspire future generations of
computer scientists. Hopper passed away in
1992, but her impact on the field of computer
science is still felt today.

The Queen of Code
Grace Hopper's work on the first compiler and the COBOL programming
language revolutionized computer science. She created the first compiler,
which translated programming languages into machine code, making
programming more accessible and efficient. Hopper's work on the first
compiler paved the way for the development of new programming
languages, including COBOL, which she helped to create. COBOL became
widely used in business and government, making it possible to perform
complex operations and data processing tasks with greater ease and speed.
Hopper's contributions to the development of the compiler and COBOL laid
the foundation for modern programming and had a significant impact on the
growth of the computer industry.

Experiment: Explore Code Compilers
Did you know that computers can only execute low-level programming languages such as machine code or assembly code? Machine
code is just a stream of binary data (a sequence of 0’s and 1’s) and assembly language also has little semantics or formal
specification, being only a mapping of human-readable symbols, including symbolic addresses, to opcodes, addresses, numeric
constants, strings and so on. Before the compiler and high- level programming languages were invented, programmers had to write
codes in machine code or assembly code. These low-level programming languages are quite different from human languages, making
coding difficult.

What you need
A computer, an internet connection, and access to an online code editor and compiler.

1. Choose a programming language that you are interested in learning more about, such as Python or Java.
2. Open an online code editor and compiler. A good one would be Compiler Explorer (https://godbolt.org/).
3. Write a simple program in your chosen programming language. For example, you could write a program that prints "Hello,
world!" to the screen.
4. Look at the output of the compiler on the right side of your screen. This will show you the assembly code that was
generated from your program.
5. Experiment with making changes to your program, such as adding or removing lines of code, and observe how the compiler
generates different assembly code.
6. Research the history of compilers and how they have evolved over time.
7. Optional: If you can code in different languages, try to write the same program in another language and see the compiling
results. Are they similar?

Procedure

Every programming language you write in needs to be translated so that a computer can understand it. This is done using a special
program called a compiler. The process of compiling involves parsing the source code, analyzing it for errors, optimizing it for
efficiency, and generating object code or executable files. The resulting machine code can be executed directly by the computer's
CPU. The use of a compiler allows programmers to write code in a higher-level language, making programming more accessible
and efficient. In this experiment, you will explore code compilers and how they work.

What is the role of a compiler in the programming process? How does a compiler translate high-level code into machine
code? What are the benefits and drawbacks of using a compiler versus an interpreter? How have compilers evolved over
time, and what impact have they had on the development of programming languages?

Think about the following questions:

https://www.youtube.com/watch?v=1LR6NPpFxw4
https://www.youtube.com/watch?v=ABlivzyfhQE&t=3s
https://godbolt.org/

